Abstract

New and very stable model catalysts have been developed. Two types of samples on oxidized 4-inch wafers were produced using processes that are generally employed in semiconductor device technology. A single wafer exhibits 109 to 1010 active sites on an otherwise flat silicon oxide surface. Sputter etching of a number of bilayers (Pd/SiO2), stacked on an oxidized Si wafer surface resulted in billions of isolated towers, consisting of disks of active metal layers, separated by inert substrate material. A second system was produced by etching pits into a heavily oxidized 4-inch Si wafer. Active material was deposited into the pits by e-beam evaporation or spin-coating of precursor solutions. The topography and chemical composition, and the changes induced by the reaction conditions applied, including stability and chemical behavior of the nanostructured systems, were investigated by means of AFM, SEM, temperature-programmed methods and XPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.