Abstract

The development of nano-enabled fertilizers presents new opportunities to improve crop nutrient use efficiency and reduce environmental impacts of agriculture. Nanoparticles, nano capsules, and nano clays can be engineered to control the release rate of nutrients to better match crop demands over time. Slow-release nano fertilizers may enhance nutrient absorption by plants while mitigating nutrient losses to the environment. Additionally, nano fertilizers can facilitate co-delivery of nutrients, growth regulators, and pesticides, allowing for more precise crop management practices. This review synthesizes current research on synthesis techniques, characterization methods, and agronomic testing results for a range of nano fertilizer products. Key nutrient carriers reviewed include mesoporous silica nanoparticles, layered double hydroxides, cellulose nanocrystals, and halloysite nanotubes loaded with nitrogen, phosphorus, potassium, and micronutrients. Release kinetics depend on nano fertilizer composition, size, and shape, as well as environmental conditions. Field studies indicate positive impacts of nano fertilizers on crop yield, nutrient use efficiency, and pest resistance compared to conventional fertilizer formulations. However, questions remain regarding large-scale feasibility, economic viability, environmental fate, and biological impacts of nano-enabled fertilizers. Ongoing interdisciplinary research across the domains of materials science, agronomy, ecology, and economics is required to develop nano fertilizers that maximize production efficiency while minimizing risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.