Abstract

The collaborative endeavor in tissue engineering is to fabricate a bio-mimetic extracellular matrix to assist tissue regeneration. Thus, a novel injectable tissue scaffold was fabricated by exploring nanotailored hyaluronic acid (nHA) and methylcellulose (MC) (nHAMC) along with pristine HA based MC scaffold (HAMC). nHA with particle size ∼22 ± 5.3 nm were obtained and nHAMC displayed a honeycomb-like 3D microporous architecture. Nano-HA bestowed better gel strength, physico-rheological and biological properties than HA. It creditably reduced the high content of salt to reduce the gelation temperature of MC. The properties ameliorated with increased in-corporation of nano-HA. The addition of salt showed more prominent effect on gelation temperature of nHAMC than in HAMC; and salting-out effect was dependent on nHA/HA content. Biocompatible nHAMC assisted adequate cell adherence and proliferation with more extended protrusions with better migration rate than control. Thus, biomodulatory effect of nanotailored glycosaminoglycan could be asserted to design an efficient thermo-responsive scaffold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.