Abstract

Sol-gel templating of titania thin films with the amphiphilic diblock copolymer poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide) is combined with microfluidic technology to control the structure formation. Due to the laminar flow conditions in the microfluidic cell, a better control of the local composition of the reactive fluid is achieved. The resulting titania films exhibit mesopores and macropores, as determined with scanning electron microscopy, X-ray reflectivity, and grazing incidence small angle X-ray scattering. The titania morphology has three features that are beneficial for application in photovoltaics: 1) a large surface-to-volume ratio important for charge generation with disordered hexagonally arranged mesopores of 25 nm size and a film porosity of up to 0.79, 2) enhanced light scattering that enables the absorption of more light, and 3) a dense titania layer with a thickness of about 6 nm at the substrate (bottom electrode) to prevent short circuits. An optical characterization complements the structural investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call