Abstract

This paper is aimed on the construction of honeycomb like patterns (HCP) with defined dimensions of pores on activated solid-state substrate. Dip coating technique with improved phase separation was used for pattern preparation, subsequent nanostructuring was realized with an excimer laser. Polystyrene patterns were prepared on perfluorethylenepropylene, which were subsequently treated with laser wavelength 248 nm. The main goal was to prepare honeycomb like pattern and by interaction of such microstructure with an excimer laser to prepare superposed structure. This idea was fully fulfilled, uniform micropattern on perfluorinated polymer was prepared, with several laser fluences and number of pulses to be tested subsequently. Optimal conditions of KrF exposure were determined to be 6000 pulses and interval of laser treatment from 8 to 16 mJ.cm−2, by this combination of input parameters a superposed globular nanostructure was constructed on honeycomb-like polystyrene microstructure. Surface wettability, morphology and chemistry of nanopatterned microstructures were changed significantly, oxygen concentration of treated substrates was significantly increased. Particular stages of globular pattern formation were studied and described in detail by atomic force microscopy, scanning electron microscopy, EDS/EDX and XPS analysis. Elemental mapping was applied for detailed analysis of prepared superposed pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.