Abstract

The structure transformations in the D16 (2024) aluminum alloy caused by isothermal rolling with effective strain up to e ~3.5 at a temperature of liquid nitrogen were investigated. It is shown that under straining to e ~2.0 the dislocation structure containing cells of the nanometric size is formed. At higher strains the dynamic recovery and continuous recrystallization result in the development of a mixed nano(sub) grain structure, which after e ~3.5 is characterized by the size and volume fraction of grains ~ 150 nm and 40-45%, respectively. Nature of the alloy structure transformations is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.