Abstract

Strain-induced cementite dissolution is a well-documented phenomenon, which occurs during the cold plastic deformation of pearlitic steels. Recently new results that can shed additional light on the mechanisms of this process were obtained thanks to atom probe tomography investigations of pearlitic steel deformed by highpressure torsion (HPT). It was shown that the process of cementite decomposition starts by carbon depletion from the carbides due to defect motion; once enough carbon is robbed from the carbide it is thermodynamically destabilized resulting in rapid break-up. Additionally, it was shown that the carbon atoms do not really dissolve in the ferrite but that they segregate to the dislocations and grain boundaries of nanocrystalline ferrite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.