Abstract

Over the last few years, there is a growing interest in photoacoustic imaging using nanoparticles techniques due to the improved penetration depth and resolution. Working with such nanoparticles usually requires pulsed laser illumination to generate an acoustic signal in the right frequencies. However, these pulsed lasers are considered expensive and complicated with respect to continuous-wave (CW) illumination. We design and simulate a special nanostructure with overall dimensions of 190×50× (26–34) nm, which blinks with fast temporal periodicity of 20 to 40 ns, under CW illumination and can be used for the generation of acoustic signals. This blinking is done using the enhanced optical absorption of metallic nanoparticles due to localized surface plasmon resonance (SPR) and the thermal expansion to generate heating–cooling cycles of the nanostructure. The CW laser wavelength is adapted to the localized SPR of the metallic nanostructure at the NIR region, which provides maximum penetration depth of light into biological tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call