Abstract

The efficiency of thermal transport across solid interfaces presents large challenges for modern technologies such as thermal management of electronics. In this paper, we report the first demonstration of significant enhancement of thermal transport across solid interfaces by introducing interfacial nanostructures. Analogous to fins that have been used for macroscopic heat transfer enhancement in heat exchangers, the nanopillar arrays patterned at the interface help interfacial thermal transport by the enlarged effective contact area. Such a benefit depends on the geometry of nanopillar arrays (e.g., pillar height and spacing), and a thermal boundary conductance enhancement by as much as ∼88% has been measured using the time-domain thermoreflectance technique. Theoretical analysis combined with low-temperature experiments further indicates that phonons with low frequency are less influenced by the interfacial nanostructures due to their large transmissivity, but the benefit of the nanostructure is fully developed at room temperature where higher frequency phonons dominate interfacial thermal transport. The findings from this work can potentially be generalized to benefit real applications such as the thermal management of electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.