Abstract
Inverse scattering problems without the phase information arise in imaging of nanostructures, whose sizes are hundreds of nanometers, as well as in imaging of biological cells. The governing equation is the 3-D generalized Helmholtz equation with the unknown coefficient, which represents the spatially distributed dielectric constant. It is assumed in the classical inverse scattering problem that both the modulus and the phase of the complex valued scattered wave field are measured outside of a scatterer. Unlike this, it is assumed here that only the modulus of the complex valued scattered wave field is measured on a certain interval of frequencies. The phase is not measured. In this paper a substantially modified reconstruction procedure of [25] is developed and numerically implemented. Ranges of parameters, which are realistic for imaging of nanostructures, are used in numerical examples. Note that numerical studies were not carried out in [25].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.