Abstract

Double perovskite Ba2LuNbO6 (BLNO)-doped YBa2Cu3O7−y (YBCO) thin films are fabricated on a SrTiO3 (001) substrate by pulsed laser deposition, and their nanostructures are characterized by transmission electron microscopy and scanning transmission electron microscopy. Cross-sectional observations and elemental mapping reveal that BLNO self-assembles during thin film deposition, and consequently, nanorods extending straight from the substrate to the surface are formed in the YBCO thin films. It is confirmed that stacking faults perpendicular to the growth direction disturb the formation of BLNO nanorods. Strain maps extracted by geometric phase analysis reveal that the tensile strain occurs in the YBCO matrix around the BLNO nanorods. Misfit dislocations are periodically introduced at the interface between the nanorod and the matrix, which results in the inhomogeneous strain of YBCO around the BLNO nanorods. The superconducting properties of the YBCO + BLNO thin films are compared with those of other previously reported YBCO thin films with normal perovskite and double perovskite nanorods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.