Abstract
Interesting sensing performances of indoor formaldehyde pollution were obtained when small amounts of zinc were introduced in tin oxides. Nanostructured Sn oxide-based porous materials doped with Zn or not, were synthesized using hydrothermal routes. The physicochemical properties of the as-prepared metal-oxide materials were characterized using nitrogen adsorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Gas sensors were prepared using the aforementioned tin oxide materials and they exhibited a high sensitivity to formaldehyde at 230 °C, as well as a good repeatability over the time. Their limit of formaldehyde detection was as low as 8 ppb in dry air and 50 ppb in air with 60% RH at 25 °C. These results were much better that those reported in the open literature and they were attributed to both higher area BET, around 180 m2/g, and smaller crystallite size, 3.1 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.