Abstract
Nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides with novel adsorbents for aqueous Congo red removal were synthesized by a polyacrylamide gel method and studied for their phase structure, microstructure, adsorption performance, and multiferroic behavior. The phase structure and purity analysis revealed that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides presented a spinel-type cubic structure, and the formation of a secondary phase such as Cr2O3, MgO, ZnO, or Co3O4 was not observed. The microstructure characterization confirmed that the spinel-type MCr2O4 oxides grew from fine spherical particles to large rhomboid particles. Adsorption experiments of spinel-type MCr2O4 oxides for adsorption of Congo red dye were fitted well with the pseudo-second-order kinetics. The adsorption capacity of the ZnCr2O4 oxide (44.038 mg/g, pH 7, temperature 28 °C, initial dye concentration 30 mg/L) was found to be higher than that of MgCr2O4 oxide (43.592 mg/g, pH 7, temperature 28 °C) and CoCr2O4 oxide (28.718 mg/g, pH 7, temperature 28 °C). The effects of initial adsorbent concentration, initial dye concentration, pH, and temperature between the ZnCr2O4 oxide and Congo red dye at which optimal removal occurs, were performed. The thermodynamic studies confirmed that a high temperature favors the adsorption of Congo red dye onto ZnCr2O4 oxide studied. The nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides that exhibited high adsorption performance for adsorption of Congo red dye can be ascribed to the synergistic effect of electrostatic interaction, pore filling, and ion exchange. The present work suggested that the nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides have excellent adsorption performance and multiferroic behavior, which shows potential applications for removal of the Congo red dye from wastewater, magnetic memory recording media, magnetic sensor, energy collection and conversion device, and read/write memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.