Abstract

Developing electrocatalysts with enhanced catalytic activities in oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) is crucial for achieving high-performance solid oxide electrochemical cells (SOCs) at reduced temperatures. Herein, a nanostructured spinel Mn1.3Co1.3Cu0.4O4 (MCCO)-based bifunctional oxygen electrode is developed for the ORR and OER using an infiltration process. A uniform distribution and percolated network of MCCO on a Sc-stabilized ZrO2 (ScSZ) backbone without agglomeration is achieved by controlling the polymeric agent and catalyst loading. SOCs with the nanostructured MCCO-ScSZ electrode exhibited superior electrochemical performance of ∼2.2 W/cm2 in the fuel cell mode and ∼1.4 A/cm2 at 1.3 V in the electrolysis mode at 750 °C. To date, these results show the best performance for SOCs using spinel-based oxygen electrodes. Thus, our findings demonstrate that the nanoengineered MCCO catalyst has enormous potential as a bifunctional oxygen electrode for high-performance reversible SOCs at reduced temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.