Abstract

Nanostructured SnSe was fabricated using hydrothermal methods followed by sintering in an evacuated-and-encapsulated ampoule. The effects of reaction temperature (150–170 °C), duration (6–12 h) and sintering temperature (450–580 °C) on the electronic transport are investigated. It is found that both the electrical conductivity and thermopower of hydrothermally synthesized and nanostructured SnSe increase with temperature and follow the variable range hopping process. As a result, disorder-induced improvement of electronic transport combined with low thermal conductivity on the pressed sample face perpendicular to the pressed direction leads to zT = 0.54 at 550 K for the sample sintered at 500 °C, demonstrating a significant improvement of zT value in the intermediate temperature range for the SnSe system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call