Abstract
In this study, a novel liquid precursor plasma spraying (LPPS) process was used to deposit Si, Mg, CO32− substituted hydroxyapatite (HA) coatings (alone and cosubstituted) onto Ti-6Al-4V substrates. Salts of silicon, magnesium, and carbonate elements were directly added into the HA liquid precursor for subsequent plasma spraying. The phase composition, structure, and morphology of all HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the trace elements were successfully incorporated into the HA structure and nanostructured coatings were obtained for all doped HA formulations. The incorporation of trace elements into the HA structure reduced its crystallinity, especially when silicon, magnesium and carbonate ions entered simultaneously into the HA structure. FTIR spectra showed that the Si-HA and Mg-HA coatings had decreased intensities in both the O-H and P-O bands and that the CO32−-HA coating was mainly a B-type carbonate-substituted HA. The results showed that the LPPS process is an effective and simple method to synthesize trace element substituted biomimetic HA coatings with nanostructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.