Abstract

Abstract The structural and optical properties of semiconductor block copolymers containing triphenylamine as hole transport material and perylene bisimide as dye and electron transport material are reported. The polymers were prepared by nitroxide mediated controlled radical polymerisation and characterized with GPC, DSC, and TGA. The electrochemical properties as determined by cyclic voltammetry show the HOMO and LUMO values of the block copolymers to be −5.23 eV and −3.65 eV, respectively. The perylene bisimide units aggregate by π–π stacking which could be analyzed with wide-angle X-ray scattering. The absorption and fluorescence properties of the perylene bisimide polymers and monomers in solution and film were investigated. It could be shown that they are strongly influenced by intramolecular coupling between different perylene bisimide units in polymers. The block copolymers exhibit a microphase separation on a nanometer scale with a constant perylene bisimide domain width of 13 nm and lengths of up to several micrometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.