Abstract

AbstractThe aim of this work is the preparation of DNA‐sensing architectures based on gold nanoparticles (AuNPs) in conjunction with an enzyme‐amplified detection to improve the analytical properties of genosensor. In order to assess the utility of study as DNA‐sensing devices, a thiolated DNA capture probe sequence was immobilized on the gold nanoparticle modified surface. After labeling of the biotinylated hybrid with a streptavidin‐alkaline phosphatase conjugate, the electrochemical detection of the enzymatic product was performed on the surface of a disposable electrode. Two different enzymatic substrates to detect the hybridization event were studied. In the first case, the enzyme catalyzed the hydrolysis of α‐naphthyl phosphate; the product is electroactive and has been detected by means of differential pulse voltammetry (DPV). In the second one, the enzyme catalyzed the precipitation of an insoluble and insulating product on the sensing interface. In this case, the electrochemical transduction of the hybridization process was performed by electrochemical impedance spectroscopy (EIS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call