Abstract

AbstractThe use of graphene oxide (GO) has become widespread due to its advantageous properties for applications in medical devices, including cell scaffolds and sensors. Investigations on the spectroscopic and electrochemical features of nanostructured cell scaffolds may be of interest to design novel scaffolds architectures aimed at understanding their interactions with healthy and cancer cells. In this study, we investigated the interactions between liver cancer cells and two GO‐containing scaffold platforms, namely: cells membrane models containing GO in the form of Langmuir–Blodgett films, and GO‐modified biodegradable polycaprolactone nanofibers. Sum‐frequency generation spectroscopy revealed the presence and formation of an expanded phospholipid monolayer underneath GO, while scanning electron microscopy images revealed the morphology of the cells on the different surfaces. Electrochemical impedance spectroscopy was employed to evaluate the charge transfer resistance in different nanostructured scaffolds containing liver cancer cells. The nanosystems developed here can be applied to study the interactions between cells on polymer nanofibers and Langmuir–Blodgett films modified with GO for regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.