Abstract

Sensors for harsh environments must exhibit robust sensing response and considerable thermal and chemical stability. We report the exploration of a novel all-alumina nanostructured sapphire optical fiber (NSOF) embedded with Au nanorods (Au NRs) for plasmonics-based sensing at high temperatures. Temperature dependence of the localized surface plasmon resonance (LSPR) of Au NRs was studied in conjunction with numerical calculations using the Drude model. It was found that LSPR of Au NRs changes markedly with temperature, red shifting and increasing in transmission amplitude as the temperature increases. Furthermore, this variation is highly localized through tunneling by overlapping the near-field of thin cladding and sapphire optical fiber. The NSOF embedded with Au NRs has the potential for sensing in advanced energy generation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.