Abstract
Platinum nanoparticles supported on high surface area carbon black (e.g., Vulcan XC-72) are the most commonly used catalysts for both cathode and anode in proton exchange membrane fuel cells (PEMFCs), however, some other catalysts such as Pt/MoOx and Pt/WOx are also considered promising, due to their higher activity, stability and enhanced CO tolerance. This work is focused on the synthesis and characterization of nanostructured Pt/WOx-C as both cathode and anode electrocatalysts for PEMFCs. The Pt deposit on the surface of the support is a crucial step in the synthesis of the catalytic materials. Because of this, different synthesis methods were probed in order to find the conditions for the higher dispersion and accessibility of Platinum over the WOx-C support and to improve the PEMFC cathode stability. The catalysts were prepared by UV and ultrasound assisted approaches, and characterized by Transmission Electron Microscopy as well as lineal and cyclic voltammetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of New Materials for Electrochemical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.