Abstract

Nanostructured poly(vinylidene fluoride) (PVDF)/acrylic rubber (ACM) blends have been prepared by simply melt blending of PVDF and several percent of ACM. The morphology and properties of the prepared nanoblends have been investigated by means of transmission electron microscopy (TEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and polarized optical microscopy (POM). It was found that ACM has been precisely dispersed in PVDF matrix with most of the particle size of less than 100 nm. The prepared nanoblends show a unique balance between the toughness and the stiffness. The impact strength and elongation at break of the nanoblends by adding small amount of ACM increase greatly, while there is only a little decreasing in the modulus, by comparing with neat PVDF. The investigation results indicate that the nanodispersed ACM domains not only take the role of the toughening agent for PVDF but also markedly increase the crystallization speed and reduce the spherulite size of PVDF, which also contributes greatly to the enhancement of the impact strength and elongation at break.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.