Abstract

1,3:2,4-Dibenzylidene sorbitol (DBS) can self-assemble into nanofibrillar networks to form organogels in a variety of organic solvents and liquid polymers. In this study, we induced the formation of organogels in solid poly(ethylene glycol) (PEG) polymers. The DBS gels appeared at temperatures above the melting point of PEG. When the DBS/PEG systems were heated at higher temperatures, they exhibited transparent, clear solution states due to the collapse of the DBS networks. Upon cooling to room temperature, the DBS self-assembled nanostructures appeared again, followed by the solidification (crystallization) of PEG. These DBS/PEG systems possess three different phases (solid, gel and liquid) and can be tuned by changes in the composition and temperature. Using polarized optical microscopy, all the gel systems were found to exhibit spherulite-like morphologies. Small-angle X-ray scattering results revealed lamellar packing in these spherulite-like morphologies. Transmission electron microscopy verified that these features were formed due to the presence of DBS nanofibrillar networks consisting of fibrils that were approximately 10-20 nm in diameter. In addition, the crystallization of PEG was strongly templated by the existing DBS nanofibrils. Moreover, there were no significant distortions in the PEG crystal structures due to the confinement of PEG between the DBS nanofibrils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.