Abstract

Polyelectrolyte-surfactant complexes (PESCs) were fabricated through the interaction of poly(acrylic acid) and four different cationic surfactants or their mixtures. PESC membranes were prepared by solution casting method and were applied in ethanol recovery from aqueous solution via pervaporation. Elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR), water contact angle (CA) measurement, differential scanning calorimetry (DSC) and X-ray scattering were employed to characterize the composition, structure and properties of PESCs. The results reveal that the investigated PESCs are similar in hydrophobicity but different in hierarchical nanostructures. In separating 5 wt% ethanol/water mixture, PESC membranes with high crystallinity will have both low flux and ethanol selectivity because of the high packing density and low permeability of crystalline regions. Meanwhile, the hierarchical nanostructures of PESC membranes change under pervaporation environment as was revealed by in situ synchrotron radiation X-ray scattering measurement. That is, the crystalline region could melt at high temperature in swelling state, thus consequently enhancing the ethanol selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.