Abstract
Polyaniline (PANI) has become an important conducting polymer for sensing due to its morphological and electrical properties. However, the processing of polyaniline in the form of nanostructured thin films is often limited by the low solubility of the polymer in water. We synthesized nanostructured polyaniline (N-PANI) aimed at improving its solubility to form layer-by-layer (LbL) thin films in conjunction with poly(vinyl sulfonic acid) (PVS) as counter ion. N-PANI was characterized via spectroscopic measurements and SEM images. After assembled as LbL thin films onto gold (Au) substrates, the PVS/N-PANI were employed as separative extended gate pH sensing membrane in FET-based devices presenting pH sensitivity around 58 mV/pH with small voltage drift. The results suggest that N-PANI can be easily processed to form suitable thin films for pH sensing and can be combined with biomolecules to be applied in FET-based biosensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.