Abstract
Application of synthetic preservatives to control the contamination of stored food commodities with aflatoxin B1 causing considerable loss in nutritional value is a major challenge. However, employment of essential oils for protecting food commodities is much limited due to high volatility, and increased susceptibility to oxidation. Therefore, objective of the present investigation was encapsulation of Pimpinella anisum essential oil in chitosan nanobiopolymer (CS-PAEO-Nm) to improve its bioefficacy, and sensorial suitability for application in food system. The synthesized CS-PAEO-Nm was characterized through SEM, FTIR, and XRD and evaluated for improved biological activity. The CS-PAEO-Nm exhibited improved antifungal (minimum inhibitory concentration = 0.08 μL/mL) and antiaflatoxigenic (minimum aflatoxin inhibitory concentration = 0.07 μL/mL) activities. CS-PAEO-Nm treatment significantly inhibited ergosterol, enhanced leakage of ions and induced impairment in defense enzymes (p < 0.05). In situ minerals and macronutrient preservation, and acceptable sensorial characteristics suggested possible recommendation of nanoencapsulated PAEO as potential safe green food preservative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.