Abstract

Neural electrodes have been developed for the diagnosis and treatment of stroke, sensory deficits, and neurological disorders based on the electrical stimulation of nerve tissue and recording of neural electrical activity. A low interface impedance and large active surface area for charge transfer and intimate contact between neurons and the electrode are critical to obtain high-quality neural signal and effective stimulation without causing damage to both tissue and electrode. In this study, a nanostructured poly(3,4-ethylenedioxythiophene) (PEDOT) coating with lots of long protrusions was created via a one-step electrochemical polymerization from a dichloromethane solution without any rigid or soft templates. The nanostructures on the PEDOT coating were basically formed by intertwined PEDOT nanofibers, which further enhanced the active surface area. The fuzzy PEDOT-modified microelectrodes exhibited an impedance as low as 1 kΩ at 1 kHz, which is much lower than those produced from aqueous 3,4-ethylenedioxythiophene (EDOT) solution, and it was comparable with PEDOT films or composites created from/with template materials. Also, more than 150 times larger charge storage capacity density was obtained compared to the unmodified microelectrode. An in vitro biocompatibility test performed on PC12 cells and primary cells suggested that the PEDOT coatings support cell adhesion, growth, and neurite extension. These results suggest the great potential of the nanostructured PEDOT coating as an electroactive and biosafe intimate contact between the implanted neural electrode and neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.