Abstract

Ni–Co alloy nanostructured electrodes with high surface area were investigated both as a cathode and anode for an alkaline electrolyzer. Electrodes were obtained by template electrosynthesis at room temperature. The electrolyte composition was tuned in order to obtain different NiCo alloys. The chemical and morphological features of nanostructured electrodes were evaluated by EDS, XRD and SEM analyses. Results show that electrodes with different composition of Ni and Co, made of nanowires well anchored to the substrate, were obtained. For both hydrogen and oxygen evolution reactions, electrochemical and electrocatalytic tests, performed in 30% w/w KOH aqueous solution, were carried out to establishing the best alloy composition. Mid-term tests conducted at a constant current density were also reported. Nanostructured electrodes with a Co atomic composition of 94.73% have the best performances for both hydrogen and oxygen evolution reactions. In particular, with this alloy, a potential of −0.43 V (RHE) and of 1.615 V (RHE) was measured for hydrogen and oxygen evolution reaction at −50 mA cm−2 and at 50 mA cm−2, respectively, after 6 h of electrolysis. The calculated Tafel's slopes for HER and OER were −0.105 and 0.088 V/dec, respectively. Furthermore, HER and OER η10 potential values were measured founding −0.231 V (RHE) and 1.494 V (RHE) respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.