Abstract

Selective transformation of levulinic acid (LA) to γ-valerolactone (GVL) using novel heterogeneous catalysts is one of the promising strategies for viable biomass processing. In this framework, we developed a continuous flow process for the selective hydrogenation of LA to GVL using several nanostructured Ni/SiO2 catalysts. The structural, textural, acidic, and redox properties of Ni/SiO2 catalysts, tuned by selectively varying the Ni amount from 5 to 40 wt %, were critically investigated using numerous materials characterization techniques. Electron microscopy images showed the formation of uniformly dispersed Ni nanoparticles on the SiO2 support, up to 30% Ni loading (average particle size is 9.2 nm), followed by a drastic increase in the particles size (21.3 nm) for 40% Ni-loaded catalyst. The fine dispersion of Ni particles has elicited a synergistic metal–support interaction, especially in 30% Ni/SiO2 catalyst, resulting in enhanced acidic and redox properties. Among the various catalysts tested, the 30% Ni/SiO2 catalyst showed the best performance with a remarkable 98% selectivity of GVL at complete conversion of LA for 2 h reaction time. Interestingly, this catalyst showed a steady selectivity to GVL (>97%), with a 54.5% conversion of LA during 20 h time-on-stream. The best performance of 30% Ni/SiO2 catalyst was attributed to well-balanced catalytic properties, such as ample amounts of strong acidic sites and abundant active metal sites. The obtained results show a great potential of applying earth-abundant nickel/silica catalysts for upgrading biomass platform molecules into value-added chemicals and high-energy-density fuels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.