Abstract

AbstractElectrospinning provides a simple and versatile route to produce nanocrystalline metal oxide layers with a highly porous fibrous morphology. The combination of small grain size, high surface area, and high porosity that includes both small and large pores is ideally suited for gas sensing. This work presents an overview of the recent developments in producing ultra‐sensitive metal oxide gas sensors by electrospinning of polymer solutions containing inorganic precursors that subsequently oxidize and crystallize into metal oxide nanoparticles. The key process parameters and their effect on microstructure evolution and gas sensing properties of TiO2 and SnO2 sensors produced by electrospinning are described. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.