Abstract
Versatile self-assembly systems to nanostructured materials in both solid and solution were developed with common amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic crystalline octadecyl pendants. The copolymers efficiently induced precision self-assembly of the pendants to provide not only core-crystalline, thermoresponsive micelles and vesicles in water and reverse micelles in hexane but also sub-10 nm lamellar or spherical microphase separation structure in solid. Typically, the solid random copolymers with 50-80 mol % octadecyl units formed lamellar structure of a hydrophilic PEG layer and a hydrophobic, crystalline octadecyl layer. Importantly, the domain spacing is about 5 nm, much smaller than that generally obtained with conventional block copolymers. The domain structure is controlled by composition, independent of chain length. The copolymers further gave various thermoresponsive, compartmentalized materials in aqueous and organic media, where the 3D structure can be also controlled by the composition and sample preparation protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.