Abstract
Mechanical alloying and mechanochemical treatment are the major powder processing techniques on the nano scale. In these processes a high energy ball mill has been applied to synthesize compounds and nanocomposites such as aluminum metal matrix nanocomposite, hydroxyapatite and bionanocomposites based on hydroxyapatite. These processes involve deformation, cold welding, fracturing, and rewelding of powder particles. Due to the applied mechanical forces, chemical reactions and phase transformations could also take place. In the present research work, the effects of milling time, milling media, and sonication process on the microstructures and morphology of the obtained materials were evaluated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The results indicate that increasing the milling time leads to an increased lattice strain and decreased crystallite sizes. Furthermore, the results show that the sonication process leads to the morphological improvement of nanocrystalline hydroxyapatite. The obtained data show that the nanocrystalline hydroxyapatite with low contamination and suitable morphology can be produced in Polyamide6 vials similar to stainless steel vials, therefore it seems that using polymeric and polymeric based nanocomposite vials with high strength and wear resistance could lead to a new way for the mass production of nanocrystalline hydroxyapatite with high performance, low contamination and low cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.