Abstract

Just as a photonic crystal is a periodic composite composed of materials with different dielectric constants, its lesser known magnetic analogue, the magnonic crystal can be considered as a periodic composite comprising different magnetic materials. Magnonic crystals are excellent candidates for the fabrication of nanoscale microwave devices, as the wavelengths of magnons in magnonic crystals are orders of magnitude shorter than those of photons, of the same frequency, in photonic crystals. Using advanced electron beam lithographic techniques, we have fabricated a series of novel bicomponent magnonic crystals which exhibit well-defined frequency bandgaps. They are in the form of laterally patterned periodic arrays of alternating cobalt and permalloy stripes of various widths ranging from 150 to 500 nm. Investigations by Brillouin light scattering and computer modeling show that the dispersion spectrum of these crystals is strongly dependent on their structural dimensions. For instance, their first frequency bandgap is found to vary over a wide range of 1.4-2.6 gigahertz. Such a functionality permits the tailoring of the bandgap structure which controls the transmission of information-carrying spin waves in devices based on these crystals. Additionally, it is observed that the bandgap width decreases with increasing permalloy stripe width, but increases with increasing cobalt stripe width, and that the bandgap center frequency is more dependent on the stripe width of permalloy than that of cobalt. This information would be of value in the design of magnonic crystals for potential applications in the emerging field of magnonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.