Abstract

To further increase the energy and power densities of lithium-ion batteries (LIBs), monoclinic Li3 V2 (PO4 )3 attracts much attention. However, the intrinsic low electrical conductivity (2.4 × 10-7 S cm-1 ) and sluggish kinetics become major drawbacks that keep Li3 V2 (PO4 )3 away from meeting its full potential in high rate performance. Recently, significant breakthroughs in electrochemical performance (e.g., rate capability and cycling stability) have been achieved by utilizing advanced nanotechnologies. The nanostructured Li3 V2 (PO4 )3 hybrid cathodes not only improve the electrical conductivity, but also provide high electrode/electrolyte contact interfaces, favorable electron and Li+ transport properties, and good accommodation of strain upon Li+ insertion/extraction. In this Review, light is shed on recent developments in the application of 0D (nanoparticles), 1D (nanowires and nanobelts), 2D (nanoplates and nanosheets), and 3D (nanospheres) Li3 V2 (PO4 )3 for high-performance LIBs, especially highlighting their synthetic strategies and promising electrochemical properties. Finally, the future prospects of nanostructured Li3 V2 (PO4 )3 cathodes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.