Abstract

Nanostructured spinel LiMn1.5Ni0.5O4, layered Li1.5Mn0.75Ni0.25O2.5 and layered-spinel hybrid particles have been successfully synthesized by hydrothermal methods. It is found that the nanostructured hybrid cathode contains both spinel and layered components, which could be expressed as Li1.13Mn0.75Ni0.25O2.32. Diffraction-contrast bright-field (BF) and dark-field (DF) images illustrate that the hybrid cathode has well dispersed spinel component. Electrochemical measurements reveal that the first-cycle efficiency of the layered-spinel hybrid cathode is greatly improved (up to 90%) compared with that of the layered material (71%) by integrating spinel component. Our investigation demonstrates that the spinel containing hybrid material delivers a high capacity of 240 mAh g(-1) with good cycling stability between 2.0 and 4.8 V at a current rate of 0.1 C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call