Abstract

Nanostructured graphite was prepared by mechanical milling under a hydrogen atmosphere. Several samples obtained after different milling times were systematically examined to get fundamental information about the structures, hydrogen concentrations, and also hydrogen desorption properties. The hydrogen concentration reaches up to 7.4 mass% (CH 0.95 ) after milling for 80 h, and two desorption peaks of hydrogen molecule (mass-number=2), starting at about 600 K and 950 K respectively, are observed inthermaldesorption mass-spectroscopy in the sample. Below the temperature of the second desorption peak, at which recrystallization related desorption occurs, the nanostructured graphite is expected to retain its specific defective structures mainly with carbon dangling bonds as suitable trapping sites for hydrogen storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.