Abstract

Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors.

Highlights

  • The giant magneto-impedance (GMI) effect is the great change of the electrical impedance that soft ferromagnetic materials exhibit when a magnetic field is applied

  • The sample deposited on cyclo olefin copolymer (COC) displays a higher value of the anisotropy field (0.4 kA/m compared with 0.2 kA/m of the sample deposited onto glass), together with a larger dispersion of anisotropies, manifested by a more rounded approach to saturation

  • This behavior is probably caused by the stresses generated during the deposition process which are more important in the case of the flexible substrate

Read more

Summary

Introduction

Introduction The giant magneto-impedance (GMI) effect is the great change of the electrical impedance that soft ferromagnetic materials exhibit when a magnetic field is applied. Experimental details The GMI material used in this investigation is obtained by sputtering deposition from permalloy (Fe20Ni80), titanium and copper targets onto both glass and cyclo olefin copolymer (COC) substrates.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.