Abstract

Abstract Solid particle erosion (SPE) and liquid droplet erosion (LDE) cause severe damage to turbine components and lead to premature failures, business loss and rapier costs to power plant owners and operators. Under a program funded by the Electric Power Research Institute (EPRI), nano­coatings are under development for application in steam and gas turbines to mitigate the adverse effects of PE and LPE on rotating blades and stationary vanes. Based on a thorough study of the available information, most promising coatings such as nano-structured titanium silicon carbo-nitride (TiSiCN), titanium nitride (TiN) and multilayered nano coatings were selected. TurboMet International (TurboMet) teamed with Southwest Research Institute (SwRI) with state-of-the-art nano-technology coating facilities with plasma enhanced magnetron sputtering (PEMS) method to apply these coatings on various substrates. Ti-6V-4Al, 12Cr, 17-4PH, and Custom 450 stainless steel substrates were selected based on the current alloys used in gas turbine compressors and steam turbine blades and vanes. Coatings with up to 30 micron thickness have been deposited on small test coupons. These are extremely hard coatings with good adhesion strength and optimum toughness. Tests conducted on coated coupons by solid particle erosion (SPE) and liquid droplet erosion (LDE) testing indicate that these coatings have excellent erosion resistance. The erosion resistance under both SPE and LDE test conditions showed the nano-structured coatings have high erosion resistance compared to other commercially produced erosion resistance coatings. Tension and high-cycle fatigue test results revealed that the hard nano-coatings do not have any adverse effects on these properties but may provide positive contribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.