Abstract

Energy is undeniably one of the most fundamental requirements of the current generation. Solar and wind energy are sustainable and renewable energy sources; however, their unpredictability points to the development of energy storage systems (ESSs). There has been a substantial increase in the use of batteries, particularly lithium-ion batteries (LIBs), as ESSs. However, low rate capability and degradation due to electric load in long-range electric vehicles are pushing LIBs to their limits. As alternative ESSs, magnesium-ion batteries (MIBs) possess promising properties and advantages. Cathode materials play a crucial role in MIBs. In this regard, a variety of cathode materials, including Mn-based, Se-based, vanadium- and vanadium oxide-based, S-based, and Mg2+-containing cathodes, have been investigated by experimental and theoretical techniques. Results reveal that the discharge capacity, capacity retention, and cycle life of cathode materials need improvement. Nevertheless, maintaining the long-term stability of the electrode-electrolyte interface during high-voltage operation continues to be a hurdle in the execution of MIBs, despite the continuous research in this field. The current Review mainly focuses on the most recent nanostructured-design cathode materials in an attempt to draw attention to MIBs and promote the investigation of suitable cathode materials for this promising energy storage device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.