Abstract

We synthesized binder-free Co(OH)2 nanocrystals on nickel electrodes by the ammonia transfer method in an aqueous solution and kinetically-controlled their thickness and height to enhance the capacitance through the facile diffusion of electrolytes in the nanocrystals. As thinner Co(OH)2 films were developed, the specific capacitance increased up to 1260 F g(-1) at a current density of 10 A g(-1). A thin layer of graphene oxide (GO) was used to wrap the Co(OH)2 nanocrystals to create a pseudocapacitor with high specific capacitance and good cyclic stability. This synthetic strategy enabled us to maximize the electrochemical cell performance, reaching a specific capacitance of 2710 F g(-1) under 10 A g(-1). The GO coating provides an effective method to increase adhesion on the nickel electrodes and to reduce the decomposition of Co(OH)2 during the charge-discharge process under high pH conditions. The prepared GO/Co(OH)2 nanocomposite layers provided not only high electron mobility but also ionic conductivity, especially when operated at a high current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.