Abstract
The current interest in energy storage systems (ESSs) is primarily due to the environmental concerns of the harmful carbon print emissions from the fossil fuels used presently. The development of energy storage systems (ESSs) comes as a crucial factor when it comes to addressing the energy problems arising due to the rapid development of the global economy and the depletion of fossil fuels that brings the increase of environmental pollution. The innovation brought about by the discoveries in nanotechnology on the production of nanostructured materials has driven the rapid growth in the research of novel carbon nanomaterials towards various applications. Through these research efforts, various carbon-based nanomaterials have been discovered to possess unique properties such as high surface area, high electrical conductivity, as well as a range of shapes, sizes and pore-size distributions that are exploited extensively for electrochemical energy storage applications. Supercapacitors (SCs), also called ultracapacitors or electrochemical capacitors, are electrochemical energy storage (EES) devices that store electrical charge on high-surface-area conducting materials. This chapter explores the fundamental electrochemical properties of various nanostructured carbon materials with a great interest based on the synthesis and supercapacitive behaviour of carbon-based nanomaterials such as carbon nano-onions (CNO), carbon nanotubes (CNTs), activated carbon (AC), carbon nanofibres (CNFs), graphene and graphene oxide (GO) and their composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.