Abstract

Most clinical tests for biomarker detection require the support of a laboratory, and the results are usually slow, less sensitive, and lack the possibility for Point-of-Care (PoC) testing. Further, with the increasing demand for sensitive, portable, rapid, and low-cost devices for clinical PoC applications, innovative methods are crucial. Thus, we report on utilizing nanostructured gold-platinum (Au-Pt) hybrid electrodes as a PoC device for highly sensitive and selective PTH detection in human serum samples. The method employs the immobilization of 3-mercaptopropionic acid to Au and subsequent activation of the carboxyl groups to enable anti-PTH antibody immobilization. Serum PTH was detected by monitoring the changes in electrochemical properties (ΔRct and Δi) of the sensor using electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) against a standard hexacyanoferrate (II/III) probe. Changes in relative response percentage (RR%) in electrochemical properties due to increased PTH concentrations in serum were observed with EIS and DPV. The biosensor exhibited a low detection limit of 0.36 pg.mL−1 (EIS) and 0.59 pg.mL−1 (DPV) in serum with a linear range of 1 to 100,000 pg.mL−1. Further, to validate the accuracy of the proposed method, clinical samples (n = 20) were examined using the EIS method and compared to an established commercial test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.