Abstract
A novel magnetorheological fluid, in which the surface of iron particles is coated with poly (butyl acrylate) by surface initiated atom transfer radical polymerization (ATRP), is investigated. The polymer coating procedure includes two steps, which are immobilization of initiator: 2-4(-chlorosulfonylphenyl)-ethytrichlorosilane (CTCS) on the iron particles surface and graft polymerization of butyl acrylate from the surface. The surface coating is characterized by FTIR and SEM. This magnetorheological fluid has controllable off-state viscosity and high shear yield stress. Coating polymer on the iron particles surface by ATRP can significantly reduce iron particles settling and improve stability of the MR fluid. Polymerization kinetics of bulk butyl acrylate are investigated using differential scanning calorimetry (DSC). Glass transition temperature is obtained using the step-scan DSC method. The molecular weight and conversion can be controlled by the molar ratio of monomer to initiator, reaction temperature and time. The reaction is first order determined by the plot of In ( M / M 0) against polymerization time. The overall activation energy is found to be 126kJ/mol by Kissinger's Method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.