Abstract

A detailed characterization project was undertaken by Velan, an international industrial valve designer and manufacturer, in collaboration with the National Research Council of Canada, Boucherville, and Polytechnique Montreal. The purpose was to assess the mechanical and tribological resistances of promising ceramic coatings for hydrometallurgy applications, including a novel n-TiO2-Cr2O3 blend. Hardness and shear strength were determined using microhardness indentation testers and universal tensile testing equipment. Wear resistance of the coatings under sliding wear, abrasion, and galling conditions were measured by standard pin-on-disk tests, abrasion tests, and custom-designed galling tests. The main result is that the synergy between Cr2O3 and n-TiO2 produced abrasion performance exceeding that of these materials alone. Also, an optimized balance between the hard and brittle Cr2O3 phases and the soft and ductile n-TiO2 phases resulted in higher abrasion, sliding, and galling resistance. The novel n-TiO2-Cr2O3 blend is therefore considered as a promising evolution of the current TiO2-Cr2O3 blend.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call