Abstract

It is well-known that electrochemical immunosensors have many advantages, including but not limited to high sensitivity, simplicity in application, low-cost production, automated control and potential miniaturization. Due to specific antigen–antibody recognition, electrochemical immunosensors also have provided exceptional possibilities for real-time trace detection of analytical biotargets, which consists of small molecules (such as natural toxins and haptens), macromolecules, cells, bacteria, pathogens or viruses. Recently, the advances in the development of electrochemical immunosensors can be classified into the following directions: the first is using electrochemical detection techniques (voltammetric, amperometric, impedance spectroscopic, potentiometric, piezoelectric, conductometric and alternating current voltammetric) to achieve high sensitivity regarding the electrochemical change of electrochemical signal transduction; the second direction is developing sensor configurations (microfluidic and paper-based platforms, microelectrodes and electrode arrays) for simultaneous multiplex high-throughput analyses; and the last is designing nanostructured materials serving as sensing interfaces to improve sensor sensitivity and selectivity. This chapter introduces the working principle and summarizes the state-of-the-art of electrochemical immunosensors during the past few years with practically relevant details for: (a) metal nanoparticle- and quantum dot-labeled immunosensors; (b) enzyme-labeled immunosensors; and (c) magnetoimmunosensors. The importance of various types of nanomaterials is also thoroughly reviewed to obtain an insight into understanding the theoretical basis and practical orientation for the next generation of diagnostic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.