Abstract

Lithium-rich nickel manganese cobalt oxide (LRNMC) is being explored as an alternative to stoichiometric nickel manganese cobalt oxide (NMC) cathode materials due to its higher, initially accessible, energy-storage capacity. This higher capacity has been associated with reversible O oxidation; however, the mechanism through which the change in O chemistry is accommodated by the surrounding cathode structure remains incomplete, making it challenging to design strategies to mitigate poor electrode performance resulting from extended cycling. Focusing on LRNMC cathodes, we identify nanoscale domains of lower electron density within the cathode as a structural consequence of O oxidation using small-angle X-ray scattering (SAXS) and operando X-ray diffraction (XRD). A feature observed in the small angle scattering region suggests the formation of nanopores, which first appears during O oxidation, and is partially reversible. This feature is not present in traditional cathode materials, including stoichiometric NMC and lithium nickel cobalt aluminum oxide (NCA) but appears to be common to other Li-rich systems tested here, Li2RuO3 and Li1.3Nb0.3Mn0.4O2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call