Abstract

Ripple-like nanostructure patterns are known to occur in ultrafast laser ablation with linearly polarized radiation. The observation of similar features at the bottom of grooves produced during laser ablation of stainless-steel with circular polarization is reported here. A comprehensive morphological analysis of the machined surfaces, carried out by electron and scanning probe microscopes, reveals a marked dependence of feature shape on process parameters, in particular on the scanning velocity of the laser spot. Such a dependence is interpreted based on the occurrence of an inclined surface during the ablation and on the consequent differential absorption of s- and p-polarized components of the laser radiation by stainless-steel. The resulting anisotropy of the absorbed energy mimics irradiation with elliptical polarization that can drive formation of ripple-like, elongated nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.