Abstract

The thermodynamic, conformational and orientational properties of polymer melts grafted on a solid substrate were obtained from a novel Monte Carlo (MC) simulation of coarse-grained model of polyethylene (PE). The interface between a non-interacting hard surface and a bulk PE melt, with all chains of which are grafted on the plane, has been studied. Different PE melts, of mean molecular length from C40 and C80, have been investigated, at grafting densities ranging from 0.92 to 1.85 nm. Profiles of monomer density and free end density, bond orientation, and average monomer position along a chain were studied. Quantitative measured in the simulations are derived from the analytical self-consistent field (SCF) theory and compared with the simulation data. The conformational and orientational properties can be quite accurately described by the theory, with some discrepancies observed near the wall and at the tail of the profile. Additional results concerning thermodynamic and surface energy of the brush are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.