Abstract

Acyl derivatives of hyaluronan (acyl-HA) are promising materials for biomedical applications. Depending on the acyl length and the degree of substitution, these derivatives range from self-assembling water-soluble polymers to materials insoluble in aqueous environments. The behaviour of acyl-HA was studied in solution, but little attention was paid to the solid state, despite its importance for applications such as medical device fabrication. We thus used X-ray scattering and electron microscopy to explore the solid-state nano-structure of acyl-HA. The set of samples included various substituents, substitution degrees and molecular weights. The obtained data showed that all studied acyl-HA materials contained structures with dimensions on the order of nanometres that were not present in unmodified HA. The size of the nanostructures increased with the acyl length, while the degree of substitution and molecular weight had negligible effects. We suggest that the observed nanostructure corresponds to a distribution of hydrophobic domains in a hydrophilic matrix of unmodified HA segments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.