Abstract

Aluminium (Al)-doped Zinc Oxide (ZnO) was deposited on glass substrates by using the sol-gel dip coating technique. Next, AZO sol-gel solution was produced via sol-gel method. Al was used as doped element with molar ratios of 1%, 2%, and 3%, while the calcination temperatures were set at 400°C, 500°C, and 600°C for 2 hours. In fact, characterization was carried out in order to determine the effect of calcination temperature and molar ratio of doping by using several techniques, such as X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), and Ultraviolet-Visible spectroscopy (UV–Vis). XRD was performed to investigate the crystal structure in which the ZnO was in wurtzite hexagonal form. Next, Energy Dispersive Spectroscopy (EDS) was used to determine the composition of thin films where the result revealed the existence of zinc, oxygen, and aluminium. The roughness of the deposited film was later measured by using the AFM approach where the findings indicated increment in RMS from 8.496 nm to 35.883 nm as the temperature was increased. Additionally, FESEM was carried out to look into the microstructure surfaces of the deposited AZO thin film for increased temperature caused the particle to grow bigger for all molar ratio of dopant. Lastly, UV–Vis was conducted to study the optical properties of AZO, in which the result demonstrated that AZO thin film possessed the highest transmittance percentage among all samples above 90% with band gap value that ranged from 3.25 eV to 3.32 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call